3.596 \(\int \frac{x^{5/2}}{(a-b x)^{3/2}} \, dx\)

Optimal. Leaf size=100 \[ -\frac{15 a^2 \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right )}{4 b^{7/2}}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{2 x^{5/2}}{b \sqrt{a-b x}} \]

[Out]

(2*x^(5/2))/(b*Sqrt[a - b*x]) + (15*a*Sqrt[x]*Sqrt[a - b*x])/(4*b^3) + (5*x^(3/2)*Sqrt[a - b*x])/(2*b^2) - (15
*a^2*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a - b*x]])/(4*b^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0300671, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {47, 50, 63, 217, 203} \[ -\frac{15 a^2 \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right )}{4 b^{7/2}}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{2 x^{5/2}}{b \sqrt{a-b x}} \]

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a - b*x)^(3/2),x]

[Out]

(2*x^(5/2))/(b*Sqrt[a - b*x]) + (15*a*Sqrt[x]*Sqrt[a - b*x])/(4*b^3) + (5*x^(3/2)*Sqrt[a - b*x])/(2*b^2) - (15
*a^2*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a - b*x]])/(4*b^(7/2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{5/2}}{(a-b x)^{3/2}} \, dx &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}-\frac{5 \int \frac{x^{3/2}}{\sqrt{a-b x}} \, dx}{b}\\ &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}-\frac{(15 a) \int \frac{\sqrt{x}}{\sqrt{a-b x}} \, dx}{4 b^2}\\ &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}-\frac{\left (15 a^2\right ) \int \frac{1}{\sqrt{x} \sqrt{a-b x}} \, dx}{8 b^3}\\ &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}-\frac{\left (15 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-b x^2}} \, dx,x,\sqrt{x}\right )}{4 b^3}\\ &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}-\frac{\left (15 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+b x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{a-b x}}\right )}{4 b^3}\\ &=\frac{2 x^{5/2}}{b \sqrt{a-b x}}+\frac{15 a \sqrt{x} \sqrt{a-b x}}{4 b^3}+\frac{5 x^{3/2} \sqrt{a-b x}}{2 b^2}-\frac{15 a^2 \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right )}{4 b^{7/2}}\\ \end{align*}

Mathematica [C]  time = 0.0125512, size = 51, normalized size = 0.51 \[ \frac{2 x^{7/2} \sqrt{1-\frac{b x}{a}} \, _2F_1\left (\frac{3}{2},\frac{7}{2};\frac{9}{2};\frac{b x}{a}\right )}{7 a \sqrt{a-b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a - b*x)^(3/2),x]

[Out]

(2*x^(7/2)*Sqrt[1 - (b*x)/a]*Hypergeometric2F1[3/2, 7/2, 9/2, (b*x)/a])/(7*a*Sqrt[a - b*x])

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 127, normalized size = 1.3 \begin{align*}{\frac{2\,bx+7\,a}{4\,{b}^{3}}\sqrt{x}\sqrt{-bx+a}}+{ \left ( -{\frac{15\,{a}^{2}}{8}\arctan \left ({\sqrt{b} \left ( x-{\frac{a}{2\,b}} \right ){\frac{1}{\sqrt{-b{x}^{2}+ax}}}} \right ){b}^{-{\frac{7}{2}}}}-2\,{\frac{{a}^{2}}{{b}^{4}}\sqrt{-b \left ( x-{\frac{a}{b}} \right ) ^{2}-a \left ( x-{\frac{a}{b}} \right ) } \left ( x-{\frac{a}{b}} \right ) ^{-1}} \right ) \sqrt{x \left ( -bx+a \right ) }{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{-bx+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(-b*x+a)^(3/2),x)

[Out]

1/4*(2*b*x+7*a)/b^3*x^(1/2)*(-b*x+a)^(1/2)+(-15/8*a^2/b^(7/2)*arctan(b^(1/2)*(x-1/2/b*a)/(-b*x^2+a*x)^(1/2))-2
*a^2/b^4/(x-1/b*a)*(-b*(x-1/b*a)^2-a*(x-1/b*a))^(1/2))*(x*(-b*x+a))^(1/2)/x^(1/2)/(-b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(-b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.94584, size = 433, normalized size = 4.33 \begin{align*} \left [-\frac{15 \,{\left (a^{2} b x - a^{3}\right )} \sqrt{-b} \log \left (-2 \, b x - 2 \, \sqrt{-b x + a} \sqrt{-b} \sqrt{x} + a\right ) - 2 \,{\left (2 \, b^{3} x^{2} + 5 \, a b^{2} x - 15 \, a^{2} b\right )} \sqrt{-b x + a} \sqrt{x}}{8 \,{\left (b^{5} x - a b^{4}\right )}}, \frac{15 \,{\left (a^{2} b x - a^{3}\right )} \sqrt{b} \arctan \left (\frac{\sqrt{-b x + a}}{\sqrt{b} \sqrt{x}}\right ) +{\left (2 \, b^{3} x^{2} + 5 \, a b^{2} x - 15 \, a^{2} b\right )} \sqrt{-b x + a} \sqrt{x}}{4 \,{\left (b^{5} x - a b^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(-b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(15*(a^2*b*x - a^3)*sqrt(-b)*log(-2*b*x - 2*sqrt(-b*x + a)*sqrt(-b)*sqrt(x) + a) - 2*(2*b^3*x^2 + 5*a*b^
2*x - 15*a^2*b)*sqrt(-b*x + a)*sqrt(x))/(b^5*x - a*b^4), 1/4*(15*(a^2*b*x - a^3)*sqrt(b)*arctan(sqrt(-b*x + a)
/(sqrt(b)*sqrt(x))) + (2*b^3*x^2 + 5*a*b^2*x - 15*a^2*b)*sqrt(-b*x + a)*sqrt(x))/(b^5*x - a*b^4)]

________________________________________________________________________________________

Sympy [A]  time = 15.6244, size = 226, normalized size = 2.26 \begin{align*} \begin{cases} - \frac{15 i a^{\frac{3}{2}} \sqrt{x}}{4 b^{3} \sqrt{-1 + \frac{b x}{a}}} + \frac{5 i \sqrt{a} x^{\frac{3}{2}}}{4 b^{2} \sqrt{-1 + \frac{b x}{a}}} + \frac{15 i a^{2} \operatorname{acosh}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )}}{4 b^{\frac{7}{2}}} + \frac{i x^{\frac{5}{2}}}{2 \sqrt{a} b \sqrt{-1 + \frac{b x}{a}}} & \text{for}\: \frac{\left |{b x}\right |}{\left |{a}\right |} > 1 \\\frac{15 a^{\frac{3}{2}} \sqrt{x}}{4 b^{3} \sqrt{1 - \frac{b x}{a}}} - \frac{5 \sqrt{a} x^{\frac{3}{2}}}{4 b^{2} \sqrt{1 - \frac{b x}{a}}} - \frac{15 a^{2} \operatorname{asin}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )}}{4 b^{\frac{7}{2}}} - \frac{x^{\frac{5}{2}}}{2 \sqrt{a} b \sqrt{1 - \frac{b x}{a}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(-b*x+a)**(3/2),x)

[Out]

Piecewise((-15*I*a**(3/2)*sqrt(x)/(4*b**3*sqrt(-1 + b*x/a)) + 5*I*sqrt(a)*x**(3/2)/(4*b**2*sqrt(-1 + b*x/a)) +
 15*I*a**2*acosh(sqrt(b)*sqrt(x)/sqrt(a))/(4*b**(7/2)) + I*x**(5/2)/(2*sqrt(a)*b*sqrt(-1 + b*x/a)), Abs(b*x)/A
bs(a) > 1), (15*a**(3/2)*sqrt(x)/(4*b**3*sqrt(1 - b*x/a)) - 5*sqrt(a)*x**(3/2)/(4*b**2*sqrt(1 - b*x/a)) - 15*a
**2*asin(sqrt(b)*sqrt(x)/sqrt(a))/(4*b**(7/2)) - x**(5/2)/(2*sqrt(a)*b*sqrt(1 - b*x/a)), True))

________________________________________________________________________________________

Giac [B]  time = 59.2308, size = 208, normalized size = 2.08 \begin{align*} \frac{{\left (2 \, \sqrt{{\left (b x - a\right )} b + a b} \sqrt{-b x + a}{\left (\frac{2 \,{\left (b x - a\right )}}{b^{3}} + \frac{9 \, a}{b^{3}}\right )} - \frac{32 \, a^{3} \sqrt{-b}}{{\left ({\left (\sqrt{-b x + a} \sqrt{-b} - \sqrt{{\left (b x - a\right )} b + a b}\right )}^{2} - a b\right )} b^{2}} + \frac{15 \, a^{2} \sqrt{-b} \log \left ({\left (\sqrt{-b x + a} \sqrt{-b} - \sqrt{{\left (b x - a\right )} b + a b}\right )}^{2}\right )}{b^{3}}\right )}{\left | b \right |}}{8 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(-b*x+a)^(3/2),x, algorithm="giac")

[Out]

1/8*(2*sqrt((b*x - a)*b + a*b)*sqrt(-b*x + a)*(2*(b*x - a)/b^3 + 9*a/b^3) - 32*a^3*sqrt(-b)/(((sqrt(-b*x + a)*
sqrt(-b) - sqrt((b*x - a)*b + a*b))^2 - a*b)*b^2) + 15*a^2*sqrt(-b)*log((sqrt(-b*x + a)*sqrt(-b) - sqrt((b*x -
 a)*b + a*b))^2)/b^3)*abs(b)/b^2